f07 — Linear Equations (LAPACK) f07asc

NAG C Library Function Document

nag_zgetrs (f07asc)

1 Purpose

nag_zgetrs (f07asc) solves a complex system of linear equations with multiple right-hand sides, AX = B,
ATX = B or A" X = B, where A has been factorized by nag_zgetrf (f07arc).

2 Specification

void nag_zgetrs (Nag_OrderType order, Nag_TransType trans, Integer n, Integer nrhs,
const Complex a[], Integer pda, const Integer ipiv[], Complex b[],
Integer pdb, NagError xfail)

3 Description

To solve a complex system of linear equations AX = B, AT X = B or A” X = B, this function must be
preceded by a call to nag_zgetrf (f07arc) which computes the LU factorization of A as A = PLU. The
solution is computed by forward and backward substitution.

If trans = Nag_NoTrans, the solution is computed by solving PLY = B and then UX =Y.
If trans = Nag_Trans, the solution is computed by solving U”Y = B and then L' PTX =Y.
If trans = Nag_ConjTrans, the solution is computed by solving U?Y = B and then LYPTX =Y.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: trans — Nag TransType Input
On entry: indicates the form of the equations as follows:
if trans = Nag NoTrans, AX = B is solved for X;
if trans = Nag_Trans, ATX = B is solved for X;
if trans = Nag_ConjTrans, A” X = B is solved for X.

Constraint: trans = Nag_NoTrans, Nag_Trans or Nag_ConjTrans.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

[NP3645/7] f07asc.1

f07asc NAG C Library Manual

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: a[dim] — const Complex Input
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + ¢ — 1] and
if order = Nag_RowMajor, the (i,7)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

On entry: the LU factorization of A, as returned by nag_zgetrf (f07arc).

6: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > max(1,n).

7: ipiv[dim| — const Integer Input
Note: the dimension, dim, of the array ipiv must be at least max(1,n).

On entry: the pivot indices, as returned by nag_zgetrf (f07arc).

8: b[dim] — Complex Input/Output

Note: the dimension, dim, of the array b must be at least max(l,pdb x nrhs) when
order = Nag_ColMajor and at least max(1,pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(i — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

9: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).
10: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

f07asc.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07asc

NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

For each right-hand side vector b, the computed solution z is the exact solution of a perturbed system of
equations (A + E)x = b, where

|B| < c(n)eP|L| U],

c(n) is a modest linear function of n, and € is the machine precision.

If z is the true solution, then the computed solution x satisfies a forward error bound of the form
= — 2|

< < e(n)cond(A, x)e
all, = e cond(4,z)

where cond(4,z) = [|[|A™"||A] |z||| /]|l < cond(A) = [||A™"||A||l, < kso(A). Note that cond(A, z)
can be much smaller than cond(A) , and cond(A”) (which is the same as cond(A”)) can be much larger
(or smaller) than cond(A) .

Forward and backward error bounds can be computed by calling nag_zgerfs (f07avc), and an estimate for
Koo (A) can be obtained by calling nag_zgecon (f07auc) with norm = Nag InfNorm.

8 Further Comments

The total number of real floating-point operations is approximately 8n°r.

This function may be followed by a call to nag_zgerfs (f07avc) to refine the solution and return an error
estimate.

The real analogue of this function is nag_dgetrs (f07aec).

9 Example

To solve the system of equations AX = B, where

—1.34 4 2.55¢ 0.28+4+3.17¢ —6.39 —2.20¢ 0.72 —0.92¢
—0.17 — 1.41¢ 331 —-0.15¢ —0.15+ 1.34 1.29 4+ 1.38:
—3.29-2397 —-191+4.42; —-0.14—-1.35¢ 1.72 +1.35¢

2414039 —-0.56+147; —-0.83 —0.69: —1.96+ 0.67:

A:

and

[NP3645/7] f07asc.3

f07asc NAG C Library Manual

26.26 +51.78; 31.32 — 6.70¢
6.43 — 8.68: 15.86 — 1.42:
—5.75+25317 —-2.15430.19¢
1.16 + 2.57¢ —2.56+ 7.55¢

Here A is nonsymmetric and must first be factorized by nag_zgetrf (f07arc).

B:

9.1 Program Text

/* nag_zgetrs (fO7asc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, ipiv_len, j, n, nrhs, pda, pdb;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *b=0;
Integer *ipiv=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define B(I,J) b[(J-1)#pdb + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define B(I,J) b[(I-1)*pdb + T - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f07asc Example Program Results\n\n");
/* Skip heading in data file */
Vscanf ("s*[*\n] ");
Vscanf ("$1d%1d%*["\n] ", &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR

pda = n;

pdb = n;
#else

pda = n;

pdb = nrhs;
#endif

ipiv_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(n #* n, Complex)) ||
(b = NAG_ALLOC(n * nrhs, Complex)) ||
! (ipiv = NAG_ALLOC(ipiv_1len, Integer)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file =*/

f07asc.4 [NP3645/7]

f07 — Linear Equations (LAPACK) f07asc

for (i = 1; i <= n; ++1)
{
for (jJ = 1; j <= n; ++3)
{
Vscanf (" (%1f , %1f)", &A(i,]j).re, &A(i,]j).im);
¥
}
Vscanf ("sx["\n] ");
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++j)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,Jj).im);
}
Vscanf ("sx["\n] ");

/* Factorize A */
fO07arc(order, n, n, a, pda, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7arc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute solution */
fO7asc(order, Nag _NoTrans, n, nrhs, a, pda, ipiv, b, pdb, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from fO7asc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥

/* Print solution */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels, O,
Nag_IntegerLabels, O, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:

if (a) NAG_FREE (a);
if (b) NAG_FREE(b);
if (ipiv) NAG_FREE (ipiv) ;
return exit_status;

9.2 Program Data

fO07asc Example Program Data

4 2 :Values of N and NRHS
(-1.34, 2.55) (0.28, 3.17) (-6.39,-2.20) (0.72,-0.92)

(-0.17,-1.41) (3.31,-0.15) (-0.15, 1.34) (1.29, 1.38)

(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) (1.72, 1.35)

(2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.%96, 0.67) :End of matrix A
(26.26, 51.78) (31.32, -6.70)

(6.43, -8.68) (15.86, -1.42)

(-5.75, 25.31) (-2.15, 30.19)

(1.16, 2.57) (-2.56, 7.55) :End of matrix B

[NP3645/7] f07asc.5

f07asc

9.3 Program Results

fO7asc Example Program Results

Solution(s)

1
1 (1.0000, 1.0000)
2 (2.0000,-3.0000)
3 (-4.0000,-5.0000)
4 (0.0000, 6.0000)

(-
(
(-
(

1
5
3
2

.0000,-2.0000
.0000, 1.0000
.0000, 4.0000
.0000,-3.0000

2
)
)
)
)

NAG C Library Manual

f07asc.6 (last)

[NP3645/7]

	f07asc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	trans
	n
	nrhs
	a
	pda
	ipiv
	b
	pdb
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

